ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
Ronald Petzoldt, Neil Alexander, Lane Carlson, Eric Cotner, Dan Goodin, Robert Kratz
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 308-313
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-915
Articles are hosted by Taylor and Francis Online.
A traveling-wave induction accelerator was designed and built to launch 1 cm diameter cylindrical aluminum tubes (surrogate IFE targets) into a vacuum chamber at speeds greater than 50 m/s.
The accelerator is 0.55 m long with 300 coils. Each coil is energized 30 degrees out of phase with the adjacent coils resulting in a traveling sinusoidal magnetic field that moves past the projectile with resulting accelerating force.
Saddle coils surrounding the axial drive coils provide projectile spin.
Four saddle coils were placed around the projectile’s flight path at a distance of 0.4 m from the barrel. AC voltage energizes these coils resulting in an AC quadrupole magnetic field that provides a centering force as the projectiles pass through the coils.
To further improve accuracy, an actively controlled, in-flight, magnetic steering system was placed after the initial passive steering coils. This system measured the position of the projectile at two locations, in real time and adjusted the AC current in another set of four saddle coils to correct the measured trajectory errors. The first set of steering coils improved the standard deviation by a factor of 8 and the second set by an additional factor of 3, for a total factor of 24 improvement.