ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Jon T. Van Lew, Alice Ying, Mohamed Abdou
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 288-294
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-937
Articles are hosted by Taylor and Francis Online.
Pebble-scale models of the interactions inside packed beds are critical for determining alterations to thermophysical properties in the wake of changes to the packed bed due to cracking, sintering, or creep-deformation of the ceramic pebbles. Simultaneously, the helium purge gas flow through the pebble bed can change; while not specifically playing a role as coolant, it does have an impact on the thermal transport in the volumetrically heated bed. We present numerical tools that are capable of resolving pebble-scale interactions coupled to bed-scale thermofluid flow. The new computational techniques are used to show that maximum temperatures in pebble beds do not increase drastically in spite of the significant amount of cracking induced in our numerical model. Furthermore a complete flow field of helium moving through densely packed spheres is modeled with the lattice-Boltzmann method to reveal the strong effect of slow-moving helium gas on flattening temperature profiles in pebble beds with nuclear heating.