ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Jon T. Van Lew, Alice Ying, Mohamed Abdou
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 288-294
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-937
Articles are hosted by Taylor and Francis Online.
Pebble-scale models of the interactions inside packed beds are critical for determining alterations to thermophysical properties in the wake of changes to the packed bed due to cracking, sintering, or creep-deformation of the ceramic pebbles. Simultaneously, the helium purge gas flow through the pebble bed can change; while not specifically playing a role as coolant, it does have an impact on the thermal transport in the volumetrically heated bed. We present numerical tools that are capable of resolving pebble-scale interactions coupled to bed-scale thermofluid flow. The new computational techniques are used to show that maximum temperatures in pebble beds do not increase drastically in spite of the significant amount of cracking induced in our numerical model. Furthermore a complete flow field of helium moving through densely packed spheres is modeled with the lattice-Boltzmann method to reveal the strong effect of slow-moving helium gas on flattening temperature profiles in pebble beds with nuclear heating.