ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Sheida Saeidi, Sergey Smolentsev, Mohamed Abdou
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 282-287
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-964
Articles are hosted by Taylor and Francis Online.
The present study addresses corrosion of RAFM steel in the flowing eutectic alloy PbLi in a special case of the 1-D magnetohydrodynamic Hartmann flow, where the liquid metal flows in a wall-normal magnetic field. For this flow, the effect of a magnetic field on corrosion and transport of corrosion products are studied analytically, using a self-similar mass transfer model, and numerically. The results are presented in the form of the dimensionless mass transfer coefficient (the Sherwood number, Sh) as a function of dimensionless flow parameters, the Reynolds (Re) and the Hartmann (Ha) numbers. In turbulent flows, Sh decreases as Ha increases due to turbulence suppression by a magnetic field. In laminar flows, Sh slightly increases with the magnetic field due to formation of steep velocity gradients at the Hartmann wall. The obtained results are then applied to analysis of corrosion for a family of PbLi blankets.