ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
T. Brown, J. Menard, L. El-Gueblay, A. Davis
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 277-281
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-911
Articles are hosted by Taylor and Francis Online.
One of the goals of the PPPL Spherical Tokamak (ST) Fusion Nuclear Science Facility (FNSF) study was to generate a self-consistent conceptual design of an ST-FNSF device with sufficient physics and engineering details to evaluate the advantages and disadvantages of different designs and to assess various ST-FNSF missions. This included striving to achieve tritium self-sufficiency; the ability to provide shielding protection of vital components and to develop maintenance strategies that could be used to maintain the in-vessel components (divertors, breeding blankets, shield modules and services) and characterize design upgrade potentials to expanded mission evolutions.
With the conceptual design of a 2.2 m ST pilot plant design already completed emphasis was placed on evaluating a range of ST machine sizes looking at a major radius of 1m and a mid-range device size between 1 m and 2.2 m.
This paper will present an engineering summary of the design details developed from this study, expanding on earlier progress reports presented at earlier conferences that focused on a mid-size 1.7 m device. Further development has been made by physics in defining a Super-X divertor arrangement that provides an expanded divertor surface area and places all PF coils outside the TF coil inner bore, in regions that improve the device maintenance characteristics. Physics, engineering design and neutronics analysis for both the 1.7 m and 1 m device have been enhanced. The engineering results of the PPPL ST-FNSF study will be presented along with comments on possible future directions.