ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. Sugano, K. Morishita, A. Kimura
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 446-449
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A375
Articles are hosted by Taylor and Francis Online.
Helium desorption from Fe-based model alloys irradiated by energetic helium ions was measured during post-irradiation annealing to investigate the energetics and kinetics of formation and annihilation of helium-related defects. Desorption temperatures were observed to be widely ranged from 450 to 1500 K, indicating that helium is bound to a wide variety of trapping sites such as vacancies and dislocations at various binding states. Such a feature is also observed in fusion ferritic steel. A comparison of helium desorption spectra obtained using Fe, Fe-Cr and Fe-Cr-Ni alloys showed that helium is more strongly trapped in bcc Fe than fcc Fe. It indicates that the long distance migration of helium takes place less frequently in bcc matrix, which may reduce the probability of helium clustering. Fusion ferric steel has a lot of trapping sites for helium such as dislocations, solute atoms, the interface of precipitates, impurities and lath boundaries, and so on, and in addition, it has bct matrix, indicating that most of helium atoms must be dispersed in the matrix and therefore it is difficult for them to cluster as a bubble. This may be a reason for higher helium resistance of the steel.