ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
Peter H. Titus, H. Zhang, A. Lumsdaine, W. D. McGinnis, J. Lore, H. Neilson, T. Brown, J. Boscary, A. Peacock, Joris Fellinger
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 272-276
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-105
Articles are hosted by Taylor and Francis Online.
Early implementation of divertor components for the Wendelstein 7-X stellarator will include an inertially cooled system of divertor elements called the Test Divertor Unit (TDU). One part of this system is a scraper element that is intended to explore methods of mitigating heat flux on the ends of the TDU elements. This system will be in place in 2017, after a run period that will involve no divertor, and will precede steady state operation with actively cooled divertors scheduled for 2019. The TDU scraper element is an experimental device with uncertain requirements and with loading conditions which will developed as a part of the experiment. The pattern of heat flux may vary from currently predicted distributions and intensities. The design of the scraper element must accommodate this uncertainty. Originally the mechanical design was to be based on extensive studies for the monoblock-based design of an actively cooled system. An obvious simplification is the elimination of the manifolding needed for the water cooling. The wall panels on which the panels are mounted are to be maintained at 200C or less. Thermal ratcheting of the tiles, supporting structures, and backing structures is managed with adequate cooldown times, thermal anchors, where allowed, and radiative shields. Water cooling of the shields was proposed and rejected. Better radiation modeling is showing less need for multiple shields, but during initial run periods, the scraper element will have to be restricted to an acceptable operating envelope. Thermal instrumentation is recommended.