ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Peter H. Titus, H. Zhang, A. Lumsdaine, W. D. McGinnis, J. Lore, H. Neilson, T. Brown, J. Boscary, A. Peacock, Joris Fellinger
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 272-276
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-105
Articles are hosted by Taylor and Francis Online.
Early implementation of divertor components for the Wendelstein 7-X stellarator will include an inertially cooled system of divertor elements called the Test Divertor Unit (TDU). One part of this system is a scraper element that is intended to explore methods of mitigating heat flux on the ends of the TDU elements. This system will be in place in 2017, after a run period that will involve no divertor, and will precede steady state operation with actively cooled divertors scheduled for 2019. The TDU scraper element is an experimental device with uncertain requirements and with loading conditions which will developed as a part of the experiment. The pattern of heat flux may vary from currently predicted distributions and intensities. The design of the scraper element must accommodate this uncertainty. Originally the mechanical design was to be based on extensive studies for the monoblock-based design of an actively cooled system. An obvious simplification is the elimination of the manifolding needed for the water cooling. The wall panels on which the panels are mounted are to be maintained at 200C or less. Thermal ratcheting of the tiles, supporting structures, and backing structures is managed with adequate cooldown times, thermal anchors, where allowed, and radiative shields. Water cooling of the shields was proposed and rejected. Better radiation modeling is showing less need for multiple shields, but during initial run periods, the scraper element will have to be restricted to an acceptable operating envelope. Thermal instrumentation is recommended.