ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
L. El-Guebaly, S. Malang, A. Rowcliffe, L. Waganer
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 251-258
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-124
Articles are hosted by Taylor and Francis Online.
In the U.S., the Fusion Nuclear Science Facility (FNSF) is viewed as an essential element of the fusion developmental roadmap. The tritium self-sufficiency, blanket testing, and materials testing are of particular interest since they define a critical element of the FNSF mission. There is a definitive need to breed the majority of, if not all, the tritium required for operation. A staged blanket testing strategy has been developed to test and enhance the blanket performance during each phase of operation. A materials testing module is critically important to include in FNSF to test large specimens of future generations of materials (for blanket, divertor, magnets, etc.) in relevant fusion environment. In this strategy, the test modules play a pivotal role and serve as “forerunners” for more advanced versions of blanket and materials that will validate their characteristics and features to assure the successful operation of DEMO and advanced power plants.