ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T. Mutoh, K. Nagaoka, H. Takahashi, H. Kasahara, M. Osakabe, S. Kubo, T. Shimozuma, Y. Yoshimura, K. Tsumori, T. Seki, K. Saito, H. Igami, H. Nakano, K. Ikeda, M. Kisaki, R. Seki, S. Kamio, T. Ii, Y. Nakamura, Y. Takeiri, O. Kaneko, LHD Experiment Group
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 216-224
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-120
Articles are hosted by Taylor and Francis Online.
Recent advances in the high power and steady state heating system and experiment results of the Large Helical Device (LHD) are reviewed in this paper. Plasma performance is extended largely through high power NBI, ECH and steady state ICRF heating devices, and improved operation techniques. The NBI of a 28 MW has extended the plasma parameter regime such as ion ITB plasmas, has a central ion temperature of more than 8 keV, and the extremely high-density plasmas ten times higher than the tokamak limit. An ECH system with seven gyrotrons (total power of 4.6MW) has been operated for pre-ionization and plasma heating. The high electron temperature regime was extended toward a higher density regime and a central electron temperature of 13.5 keV was achieved with a line-averaged electron density of ne = 1 x 1019 m-3. Steady state operation plasma with ne = 1.2 x 1019 m-3, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen.