ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
T. Mutoh, K. Nagaoka, H. Takahashi, H. Kasahara, M. Osakabe, S. Kubo, T. Shimozuma, Y. Yoshimura, K. Tsumori, T. Seki, K. Saito, H. Igami, H. Nakano, K. Ikeda, M. Kisaki, R. Seki, S. Kamio, T. Ii, Y. Nakamura, Y. Takeiri, O. Kaneko, LHD Experiment Group
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 216-224
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-120
Articles are hosted by Taylor and Francis Online.
Recent advances in the high power and steady state heating system and experiment results of the Large Helical Device (LHD) are reviewed in this paper. Plasma performance is extended largely through high power NBI, ECH and steady state ICRF heating devices, and improved operation techniques. The NBI of a 28 MW has extended the plasma parameter regime such as ion ITB plasmas, has a central ion temperature of more than 8 keV, and the extremely high-density plasmas ten times higher than the tokamak limit. An ECH system with seven gyrotrons (total power of 4.6MW) has been operated for pre-ionization and plasma heating. The high electron temperature regime was extended toward a higher density regime and a central electron temperature of 13.5 keV was achieved with a line-averaged electron density of ne = 1 x 1019 m-3. Steady state operation plasma with ne = 1.2 x 1019 m-3, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen.