ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Younggil Jin, Hyun-Su Kim, Sun-Taek Lim, Jin-Young Lee, Nam-Kyun Kim, Jae-Min Song, Gon-Ho Kim
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 113-119
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-886
Articles are hosted by Taylor and Francis Online.
The effect of interface diffusion between tungsten and graphite on embrittlement has not been examined over the tungsten ductile-brittle transition temperature. To analyze interface embrittlement with tungsten carbide (WC) formation and hardness, a reactive diffusion barrier model was adapted to clarify the roles of leak rate, lag time, and impurity. Plasma-sprayed tungsten (PS-W) on graphite with molybdenum interlayer (diffusion barrier) was fabricated using plasma-spray. The carbon concentration and hardness were measured using energy-dispersive X-ray spectroscopy and micro-indentation after furnace experiments relevant to plasma-facing component upper limit temperature (1470 K). The lag time and the leak rate were determined by the model with different impurity amounts (10-30 at. %) and barrier thicknesses (1-40 μm). It is worth noting that the lag time determines embrittlement threshold time because it delays the onset of diffusion, and it is expanded with thicker barrier and impurity (0.07-21000 ms). The leak rate represents the embrittlement rate since it limits the diffusion flux, and it does not depend on impurity but on barrier thickness. Diffusion-induced interface embrittlement was measured and estimated based on WC fraction. The embrittlement can be spatially expanded with time, suggesting that interface embrittlement can be severe for KSTAR long-term operation.