ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Younggil Jin, Hyun-Su Kim, Sun-Taek Lim, Jin-Young Lee, Nam-Kyun Kim, Jae-Min Song, Gon-Ho Kim
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 113-119
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-886
Articles are hosted by Taylor and Francis Online.
The effect of interface diffusion between tungsten and graphite on embrittlement has not been examined over the tungsten ductile-brittle transition temperature. To analyze interface embrittlement with tungsten carbide (WC) formation and hardness, a reactive diffusion barrier model was adapted to clarify the roles of leak rate, lag time, and impurity. Plasma-sprayed tungsten (PS-W) on graphite with molybdenum interlayer (diffusion barrier) was fabricated using plasma-spray. The carbon concentration and hardness were measured using energy-dispersive X-ray spectroscopy and micro-indentation after furnace experiments relevant to plasma-facing component upper limit temperature (1470 K). The lag time and the leak rate were determined by the model with different impurity amounts (10-30 at. %) and barrier thicknesses (1-40 μm). It is worth noting that the lag time determines embrittlement threshold time because it delays the onset of diffusion, and it is expanded with thicker barrier and impurity (0.07-21000 ms). The leak rate represents the embrittlement rate since it limits the diffusion flux, and it does not depend on impurity but on barrier thickness. Diffusion-induced interface embrittlement was measured and estimated based on WC fraction. The embrittlement can be spatially expanded with time, suggesting that interface embrittlement can be severe for KSTAR long-term operation.