ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Satoshi Nakamoto, Yousuke Takeshita, Shota Hagihara, Takayuki Wada, Hiromasa Takeno, Yasuyoshi Yasaka, Yuichi Furuyama, Akira Taniike
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 166-170
Technical Note | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-900
Articles are hosted by Taylor and Francis Online.
With an aim to improve the total efficiency of a D-3He nuclear fusion direct energy conversion system, a secondary electron direct energy converter (SEDEC) is proposed. The incident high-energy protons in an SEDEC penetrate a large number of foil electrodes aligned in the direction of the proton beam, and emitted secondary electrons are recovered. The results of the initial experiments showed that most of the secondary electrons flowed into anteroposterior electrodes and did not arrive at the electron collector located alongside and perpendicular to the direction of the proton beam. A magnetic field was introduced to push the electrons toward the electron collector, but it was not effective for energy recovery. This technical note analyzes the trajectories of electrons in the presence of the magnetic field and proposes and examines a revised arrangement of permanent magnets. The arrangement of the magnets along one side of the proton beam greatly improved the energy recovery; however, the recovery level was lower than that without magnets.