ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
K. Y. Lee
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 152-156
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-865
Articles are hosted by Taylor and Francis Online.
A method of estimating the margin of error for Thomson scattering systems based on polychromators has been devised during the operation of the Translation, Confinement, and Sustainment Upgrade (TCSU) experiment. This method first uses the propagation of uncertainty to determine the standard deviation (SD) of the ratio between two output signals. Later the SD or error is projected onto a characteristic curve that relates different ratios of the signal output to the electron temperature. This method brings an asymmetry to the error bounds, which goes accordingly to the ratio of the spectral response function for distinguishing higher temperatures. Also, the method follows with the nature of photon-statistics. As the plasma density is increased, as one might expect, the corresponding amplitude of the error bar becomes smaller.