ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
H. Gota, TAE Team
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 44-49
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-871
Articles are hosted by Taylor and Francis Online.
C-2 is a unique, large compact-toroid (CT) device at Tri Alpha Energy that produces field-reversed configuration (FRC) plasmas by colliding and merging oppositely directed CTs. Significant progress has recently been made on C-2, achieving ~5 ms stable plasmas with a dramatic improvement in confinement, far beyond the prediction from the conventional FRC scaling. This stable, long-lived FRC plasma state is called the high-performance FRC (HPF) regime. The key approaches to achieve the HPF regime are as follows: (i) dynamic FRC formation by collision/merging of super-Alfvénic CTs, (ii) effective control of stability and transport by end-on plasma guns and neutral-beam (NB) injection, and (iii) active wall conditioning using titanium and lithium gettering systems. Moreover, further improvement in FRC confinement has been obtained with improved open-field-line plasma properties such as a lower fluctuation level, reduced transport rates in radial/axial directions, and lower background neutral density as well as recycling. This open-field-line plasma improvement, mainly obtained by higher magnetic fields in the formation and mirror-plug sections, allows for better NB coupling to the core-FRC plasma. In the recent HPF regime there is a sufficiently large fast-ion population that appears to improve FRC confinement properties as well as stability; the FRC particle and global energy confinement times both increased by ~30% and ~80%, respectively, compared to that of the previously obtained HPF regime.