ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
K. Oki, M. Sakamoto, Y. Nakashima, M. Yoshikawa, R. Nohara, K. Nojiri, A. Terakado, M. Mizuguchi, K. Ichimura, H. Takeda, M. Iwamoto, Y. Hosoda, K. Shimizu, M. Yoshikawa, J. Kohagura, T. Imai, M. Ichimura
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 81-86
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-896
Articles are hosted by Taylor and Francis Online.
In tandem mirror GAMMA 10/PDX, H2 gas has been injected to a divertor simulation experimental module (D-module) for radiation cooling and detachment study. Electron temperature (Te) and density (ne) distributions have been measured by Langmuir probes in the D-module. With increase of H2 gas amount, Te has decreased especially at the V-shaped target plate from 30-40 eV to 3-5 eV. Moreover, ne and ion saturation current Iis have increased at the inlet but decreased at the target and had a steeper distribution toward the corner. These results suggest detachment. The movement of the ionization front to the upstream side with increase of the gas is suggested from the change in the plasma parameters profiles along the magnetic field line.