ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. Sumida, M. Ichimura, T. Yokoyama, M. Hirata, R. Ikezoe, Y. Iwamoto, T. Okada, K. Takeyama, S. Jang, M. Sakamoto, Y. Nakashima, M. Yoshikawa, R. Minami, K. Oki, M. Mizuguchi, K. Ichimura
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 136-141
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-890
Articles are hosted by Taylor and Francis Online.
In the GAMMA 10 tandem mirror, divertor simulation experiments that utilize particle flux toward the west end region (called end-loss flux) have been implemented. Since a positive correlation has been reported between the end-loss flux and the central-cell density, an increase of the central-cell density is important for obtaining a higher end-loss flux on the divertor simulation experiments. By arranging the ion cyclotron range of frequency (ICRF) systems so as to excite strong ICRF waves in both anchor cells simultaneously, we have succeeded in producing high-density plasmas (line density of 1.2×1014 cm−2) in both anchor cells. As a result, a higher central-cell density of 4.4×1012 cm−3 and a higher end-loss flux of more than 1023 m−2s−1 have been obtained. One of the possible mechanisms of the high density production is a formation of positive potentials on both anchor cells. Plasmas in the central cell are confined due to those potentials.