ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
A. A. Ivanov, A. V. Burdakov, P. A. Bagryansky
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 56-62
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-842
Articles are hosted by Taylor and Francis Online.
Axisymmetric magnetic mirrors are capable of confining high-β plasma and, at the same time, enable provision of higher magnetic field in the confinement region compared to non-axisymmetric systems. These advantages and their technical simplicity make them rather attractive as high-flux volumetric neutron sources, fission-fusion hybrids, and in the longer term as pure fusion reactors. The specific issues that still have to be further studied are plasma MHD stability at plasma parameters relevant to fusion applications, too-high plasma end losses, and the relatively low electron temperatures obtained so far in the experiments. These main physics issues were successfully addressed in the recent experiments in the GDT and GOL-3 devices in Novosibirsk. The review concludes with an update of the experimental results from both experimental devices and a discussion about the limiting factors in the current experiments. Specifically, we report on an almost twofold increase of the electron temperature with application of ECR heating, which was obtained in the experiments on the GDT device, and control of plasma rotation profile by injection of an electron beam at the end of the device, which was demonstrated in the GOL-3 device.