ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. A. Ivanov, A. V. Burdakov, P. A. Bagryansky
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 56-62
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-842
Articles are hosted by Taylor and Francis Online.
Axisymmetric magnetic mirrors are capable of confining high-β plasma and, at the same time, enable provision of higher magnetic field in the confinement region compared to non-axisymmetric systems. These advantages and their technical simplicity make them rather attractive as high-flux volumetric neutron sources, fission-fusion hybrids, and in the longer term as pure fusion reactors. The specific issues that still have to be further studied are plasma MHD stability at plasma parameters relevant to fusion applications, too-high plasma end losses, and the relatively low electron temperatures obtained so far in the experiments. These main physics issues were successfully addressed in the recent experiments in the GDT and GOL-3 devices in Novosibirsk. The review concludes with an update of the experimental results from both experimental devices and a discussion about the limiting factors in the current experiments. Specifically, we report on an almost twofold increase of the electron temperature with application of ECR heating, which was obtained in the experiments on the GDT device, and control of plasma rotation profile by injection of an electron beam at the end of the device, which was demonstrated in the GOL-3 device.