ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
A. A. Ivanov, A. V. Burdakov, P. A. Bagryansky
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 56-62
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-842
Articles are hosted by Taylor and Francis Online.
Axisymmetric magnetic mirrors are capable of confining high-β plasma and, at the same time, enable provision of higher magnetic field in the confinement region compared to non-axisymmetric systems. These advantages and their technical simplicity make them rather attractive as high-flux volumetric neutron sources, fission-fusion hybrids, and in the longer term as pure fusion reactors. The specific issues that still have to be further studied are plasma MHD stability at plasma parameters relevant to fusion applications, too-high plasma end losses, and the relatively low electron temperatures obtained so far in the experiments. These main physics issues were successfully addressed in the recent experiments in the GDT and GOL-3 devices in Novosibirsk. The review concludes with an update of the experimental results from both experimental devices and a discussion about the limiting factors in the current experiments. Specifically, we report on an almost twofold increase of the electron temperature with application of ECR heating, which was obtained in the experiments on the GDT device, and control of plasma rotation profile by injection of an electron beam at the end of the device, which was demonstrated in the GOL-3 device.