ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
N. A. P. Kiran Kumar, K. J. Leonard, G. E. Jellison, L. L. Snead
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 771-783
Technical Paper | doi.org/10.13182/FST14-875
Articles are hosted by Taylor and Francis Online.
The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation tolerance. Alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 displacements per atom (dpa) at 458 ± 10 K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa result in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopy (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects, which increase in size with irradiation dose. The typical size of each defect was ≈8 nm in 1-dpa specimens and ≈42 nm in 4-dpa specimens. Buckling-type delamination of the interface between the substrate and first layer was typically observed in both 1- and 4-dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high-resolution-scanning–TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in the Al2O3/SiO2 mirror, although it was less evident in the HfO2/SiO2 system. The ultimate goal of this work is to provide insight into the radiation-induced failure mechanisms of these mirrors.