ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Dongxun Zhang, Wei Liu, Yuan Qian, Ji Que
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 681-684
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T109
Articles are hosted by Taylor and Francis Online.
Tritium was generated by the interaction of neutrons with the lithium and beryllium in the molten salt reactors (MSRs), which use Flibe as one of solvents of fluoride fuel. Tritium as by-product in the MSRs would be an important safety issue because it could easily diffuse through high temperature heat exchangers into environment. The experimental technique of gas driven permeation was used to investigate the transport parameter of hydrogen in Hastelloy C-276 which was considered as one of the candidate structure materials. The measurements were carried out at the temperature range of 400-800°C with hydrogen loading pressures ranging from 5×103 to 4×104 Pa. The H diffusive transport parameters for Hastelloy C-276 followed an Arrhenius law in this temperature range and were decreased due to the existence of the alloying elements compared with Ni201. The possible reason may be the trapping effects, which were formed by the alloying elements of Mo and Cr in the matrix. At the same time, the thin oxidation layer formed by the high Cr content could lead to the slower dissociation process of H2 at the surface.