ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
S.-H. Yun, M. H. Chang, H.-G. Kang, D. Y. Chung, Y. H. Oh, K. J. Jung, H. Chung, D. Koo, S. H. Sohn, K.-M. Song
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 671-676
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T107
Articles are hosted by Taylor and Francis Online.
ITER Storage and delivery system (SDS) is a complex assembly system. Lots of individual components including tens of storage beds, a few reactors, multiple transfer pumps, vessels, umpteen instruments & sensors which are interconnected with tubing and fittings in a confined glovebox system are to be installed in the given Tritium Plant area. The most important SDS getter bed will be utilized for absorbing and desorbing of hydrogen isotopes in accordance with the fusion fuel cycle scenario. This paper deals with R&D activities on SDS bed design, especially thermal hydraulic analysis in heat loss aspect, the real-time gas analysis in He-3 collection system, and introductory experimental plans using depleted uranium (DU) getter material for storage of hydrogen isotopes, especially of tritium.