ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
T. Yoshida, N. Ezumi, K. Sawada, Y. Tanaka, M. Tanaka, K. Nishimura
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 650-653
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T102
Articles are hosted by Taylor and Francis Online.
Recovery of tritium in nuclear fusion plants is a key issue for safety. So far, the oxidation procedure using atmospheric pressure plasma is expected to the recovery method. In this study, to clarify the mechanism of hydrogen oxidation by plasma chemistry, we investigated the dependence of hydrogen combustion efficiency on gas flow rate and input power in the atmospheric pressure microwave plasma. It is found that the combustion efficiency depended on energy density of absorbed microwave power. Hence, the energy density is considered as a key parameter for combustion processes.
Also neutral gas temperatures in and outside of the plasma were measured by an optical emission spectroscopy method and thermocouple. The result shows that the neutral gas temperature in the plasma is much higher than the outside temperature of plasma. The high neutral gas temperature would affect to the combustion reaction.