ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Xiong Yifu, Song Jiangfeng, Luo Deli, Lei Qianghua, Chen Chang’an
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 647-649
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T101
Articles are hosted by Taylor and Francis Online.
TiN+TiC+TiN multiple films are deposited on the surface of 1Cr18Ni9Ti stainless steel by ion-beam assisted deposition technology. The characteristics of films are tested by XPS, SEM and XRD, which showed that the film are compact and uniform with a thickness of about 15μm, and have a good adherence with the substrate below 773 K. The diffraction peaks in the XRD patterns for TiC and TiN are broadened, implying that the multiple films are deposited on the surface of 1Cr18Ni9Ti stainless steel. Meanwhile, the C-H bonded CH4-appears in the infrared spectra of multiple films, suggesting that the CH4- is in a static state, so hydrogen atom cannot migrate from the site bonded with carbon to a neighboring site. The deuterium permeability in 1Cr18Ni9Ti stainless steel coated with multiple films is 2-3 orders of magnitude lower than that in pure 1Cr18Ni9Ti stainless steel substrate from 473 K to 773 K.