ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
C. Varlam, I. Vagner, I. Faurescu, D. Faurescu
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 623-626
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T95
Articles are hosted by Taylor and Francis Online.
In order to determine organically bound tritium (OBT) from environmental samples, these must be converted to water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities (14C from organically compounds, 36Cl as chloride and free chlorine, 40K as potassium cations) and emulsion separation.
The paper summarizes results of physico-chemical analyses of initial combustion water and of purified combustion water using 5 methods (distillation with chemical treatment, lyophilisation, chemical treatment followed by lyophilisation, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilisation), determining the value of pH, conductivity and content of some anions (SO4-2, Cl-, NO3-) and cations (Na+, K+, Ca+2, Mg+2, iron, chromium, nickel and copper). Afterwards, each sample was measured, and OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilisation.