ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
C. Varlam, I. Vagner, I. Faurescu, D. Faurescu
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 623-626
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T95
Articles are hosted by Taylor and Francis Online.
In order to determine organically bound tritium (OBT) from environmental samples, these must be converted to water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities (14C from organically compounds, 36Cl as chloride and free chlorine, 40K as potassium cations) and emulsion separation.
The paper summarizes results of physico-chemical analyses of initial combustion water and of purified combustion water using 5 methods (distillation with chemical treatment, lyophilisation, chemical treatment followed by lyophilisation, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilisation), determining the value of pH, conductivity and content of some anions (SO4-2, Cl-, NO3-) and cations (Na+, K+, Ca+2, Mg+2, iron, chromium, nickel and copper). Afterwards, each sample was measured, and OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilisation.