ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Toshiharu Takeishi, Kenji Kotoh, Yoshiya Kawabata, Jun-ichi Tanaka, Shingo Kawamura, Masayuki Iwata
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 596-599
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T88
Articles are hosted by Taylor and Francis Online.
In the decommissioning project of tritium handling laboratories or/and facilities, oils such as used in the vacuum pumps have been left conventionally in their comprehensive facilities. Existence of oils, especially highly-contaminated with tritium, is becoming one of the serious problems in projects for decommissioning tritium handling laboratories because of no disposal way of the tritiated waste oils. Experiments using bubblers were carried out to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump-oil. Contamination of pump oil was observed by bubbling with tritiated water vapor and tritiated hydrogen gas. And then, subsequent decontamination of tritiated oil was processed by bubbling with pure water vapor and dry argon gas. The bubbling with water vapor was more effective than with the dry gas. Experimental results show that the water vapor bubbling in an oil bottle can remove tritium efficiently from the contaminated oil into another water-bubbling bottle.