ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
Toshiharu Takeishi, Kenji Kotoh, Yoshiya Kawabata, Jun-ichi Tanaka, Shingo Kawamura, Masayuki Iwata
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 596-599
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T88
Articles are hosted by Taylor and Francis Online.
In the decommissioning project of tritium handling laboratories or/and facilities, oils such as used in the vacuum pumps have been left conventionally in their comprehensive facilities. Existence of oils, especially highly-contaminated with tritium, is becoming one of the serious problems in projects for decommissioning tritium handling laboratories because of no disposal way of the tritiated waste oils. Experiments using bubblers were carried out to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump-oil. Contamination of pump oil was observed by bubbling with tritiated water vapor and tritiated hydrogen gas. And then, subsequent decontamination of tritiated oil was processed by bubbling with pure water vapor and dry argon gas. The bubbling with water vapor was more effective than with the dry gas. Experimental results show that the water vapor bubbling in an oil bottle can remove tritium efficiently from the contaminated oil into another water-bubbling bottle.