ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Misaki Sato, Hiromichi Uchimura, Kensuke Toda, Tomonori Tokunaga, Hideo Watanabe, Naoaki Yoshida, Yuji Hatano, Ryuta Kasada, Takuya Nagasaka, Akihiko Kimura, Yasuhisa Oya, Kenji Okuno
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 551-554
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T77
Articles are hosted by Taylor and Francis Online.
The deuterium retention behavior for the Vacuum Plasma Spraying (VPS) tungsten (W) coating was studied to demonstrate the tritium retention as a function of heating temperature. It was found that two major deuterium desorption stages were observed at the temperature regions of 400 - 700 K (Stage 1) and 900 - 1100 K (Stage 2), considering that Stage 1 was linked to the desorption of deuterium trapped by near surface and intrinsic defects, and Stage 2 was related to the desorption of deuterium bound to impurities as C-D bonds. By heating the sample above 673 K, the major peak of C-1s was shifted from C-O bond to C-C bond, where the retention of deuterium as Stage 2 was increased. Therefore it was indicating that the hydrogen isotope retention was controlled by the amount of C-C bond in VPS, most of which was contaminated during the VPS coating process. The comparison of several samples (VPS-W with shading, VPS-W without shading and Polycrystalline W (PCW)) shows that the carbon impurity has a large affinity with deuterium and make stable trapping states compared to that with intrinsic defects and grain boundaries. However, most of them was reduced by heating at 1173 K. Therefore, heating treatment is quite important to get rid of carbon impurities and refrain higher tritium retention in VPS.