ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Misaki Sato, Hiromichi Uchimura, Kensuke Toda, Tomonori Tokunaga, Hideo Watanabe, Naoaki Yoshida, Yuji Hatano, Ryuta Kasada, Takuya Nagasaka, Akihiko Kimura, Yasuhisa Oya, Kenji Okuno
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 551-554
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T77
Articles are hosted by Taylor and Francis Online.
The deuterium retention behavior for the Vacuum Plasma Spraying (VPS) tungsten (W) coating was studied to demonstrate the tritium retention as a function of heating temperature. It was found that two major deuterium desorption stages were observed at the temperature regions of 400 - 700 K (Stage 1) and 900 - 1100 K (Stage 2), considering that Stage 1 was linked to the desorption of deuterium trapped by near surface and intrinsic defects, and Stage 2 was related to the desorption of deuterium bound to impurities as C-D bonds. By heating the sample above 673 K, the major peak of C-1s was shifted from C-O bond to C-C bond, where the retention of deuterium as Stage 2 was increased. Therefore it was indicating that the hydrogen isotope retention was controlled by the amount of C-C bond in VPS, most of which was contaminated during the VPS coating process. The comparison of several samples (VPS-W with shading, VPS-W without shading and Polycrystalline W (PCW)) shows that the carbon impurity has a large affinity with deuterium and make stable trapping states compared to that with intrinsic defects and grain boundaries. However, most of them was reduced by heating at 1173 K. Therefore, heating treatment is quite important to get rid of carbon impurities and refrain higher tritium retention in VPS.