ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Misaki Sato, Hiromichi Uchimura, Kensuke Toda, Tomonori Tokunaga, Hideo Watanabe, Naoaki Yoshida, Yuji Hatano, Ryuta Kasada, Takuya Nagasaka, Akihiko Kimura, Yasuhisa Oya, Kenji Okuno
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 551-554
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T77
Articles are hosted by Taylor and Francis Online.
The deuterium retention behavior for the Vacuum Plasma Spraying (VPS) tungsten (W) coating was studied to demonstrate the tritium retention as a function of heating temperature. It was found that two major deuterium desorption stages were observed at the temperature regions of 400 - 700 K (Stage 1) and 900 - 1100 K (Stage 2), considering that Stage 1 was linked to the desorption of deuterium trapped by near surface and intrinsic defects, and Stage 2 was related to the desorption of deuterium bound to impurities as C-D bonds. By heating the sample above 673 K, the major peak of C-1s was shifted from C-O bond to C-C bond, where the retention of deuterium as Stage 2 was increased. Therefore it was indicating that the hydrogen isotope retention was controlled by the amount of C-C bond in VPS, most of which was contaminated during the VPS coating process. The comparison of several samples (VPS-W with shading, VPS-W without shading and Polycrystalline W (PCW)) shows that the carbon impurity has a large affinity with deuterium and make stable trapping states compared to that with intrinsic defects and grain boundaries. However, most of them was reduced by heating at 1173 K. Therefore, heating treatment is quite important to get rid of carbon impurities and refrain higher tritium retention in VPS.