ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Simone Rupp, Timothy M. James, Helmut H. Telle, Magnus Schlösser, Beate Bornschein
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 547-550
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T76
Articles are hosted by Taylor and Francis Online.
The precise compositional analysis of tritium-containing gases is of high interest for tritium accountancy, e.g. in future fusion power plants. Raman spectroscopy provides a fast and contact-free gas analysis procedure with high precision, thus being an advantageous tool for the named purpose. In this paper, it is shown that the sensitivity achieved with conventional Raman systems (in 90° or forward/backward configurations) can be enhanced by at least one order of magnitude by using a metal-lined hollow glass fiber as the Raman cell. This leads to the ability to detect low partial pressures of tritium within short measurement intervals (< 0.5 mbar in < 0.5 s).