ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Simone Rupp, Timothy M. James, Helmut H. Telle, Magnus Schlösser, Beate Bornschein
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 547-550
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T76
Articles are hosted by Taylor and Francis Online.
The precise compositional analysis of tritium-containing gases is of high interest for tritium accountancy, e.g. in future fusion power plants. Raman spectroscopy provides a fast and contact-free gas analysis procedure with high precision, thus being an advantageous tool for the named purpose. In this paper, it is shown that the sensitivity achieved with conventional Raman systems (in 90° or forward/backward configurations) can be enhanced by at least one order of magnitude by using a metal-lined hollow glass fiber as the Raman cell. This leads to the ability to detect low partial pressures of tritium within short measurement intervals (< 0.5 mbar in < 0.5 s).