ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Florian Priester, Marco Röllig
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 539-542
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T74
Articles are hosted by Taylor and Francis Online.
Turbomolecular pumps (TMP) will be used with large amounts of tritium in future fusion machines like ITER, DEMO and in the KATRIN Experiment. In the work presented, a stress test of a Leybold® MAG W2800 with a tritium throughput of 1.1 kg over 384 days of operation was performed at TLK. After this, the pump was dismantled and the tritium uptake in several parts was determined. Especially the non-metallic parts of the pump absorb large amounts of tritium and are most likely responsible for the observed pollution of the process gas. The total tritium uptake of the TMP was estimated with 0.1-1.1 TBq. No radiation-induced damages were found on the inner parts of the pump. The TMP showed no signs of functional limitations during the 384 days of operation.