ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
Hilary Phillips, Marc Parisot, Julian Dean, Lauren Perrie, John Sephton
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 527-530
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T71
Articles are hosted by Taylor and Francis Online.
Increasing quantities of radioactive waste are being placed into storage facilities. Many of the waste products contain organic materials which may undergo degradation leading to the release of tritium and carbon-14 species into waste containers and potentially into the environment. Monitoring for radioactive gas releases are required for environmental regulatory compliance and for radiation protection of facility workers.
Research is currently being undertaken at the National Physical Laboratory (NPL) as part of a European Metrology Research Programme (EMRP) project MetroRWM to adapt and automate existing environmental sampling techniques for tritium and carbon-14 species. An innovative modular system is being developed which will lead to the introduction of an on-site small scale system capable of gas collection, liquid scintillation sample preparation and measurement.
This paper outlines the evaluation of a liquid scintillation system that has been performed to date using active solutions of spiked trapping medium of similar activity concentrations to those anticipated in a waste repository. This system will operate using pre-set conditions for quench and luminescence derived from these and subsequent trials, unlike most other counters for which corrections for these phenomena are applied post measurement.