ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yasuhisa Oya, Misaki Sato, Hiromichi Uchimura, Naoko Ashikawa, Akio Sagara, Naoaki Yoshida, Yuji Hatano, Kenji Okuno
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 515-518
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T68
Articles are hosted by Taylor and Francis Online.
The effect of carbon implantation for the dynamic recycling of deuterium, which demonstrates tritium recycling, including retention and sputtering, was investigated using in-situ sputtered particle measurements. The C+ implanted W, WC and HOPG were prepared and dynamic sputtered particles were measured during H2 + irradiation. It was found that the major hydrocarbon species for C+ implanted tungsten was found to be CH3, although those for WC and HOPG were CH4. The chemical state of hydrocarbon is controlled by the H concentration in a W-C mixed layer. The amount of C-H bond and the retention of H trapped by carbon atom should control the chemical form of hydrocarbon sputtered by H2+ irradiation and the desorption of CH3 and CH2 was due to chemical sputtering, although that for CH was physical sputtering. The activation energy for CH3 desorption was estimated to be 0.4 eV, corresponding to the trapping process of hydrogen by carbon through the diffusion in W. It was concluded that the chemical states of hydrocarbon sputtered by H2+ irradiation for W was determined by the amount of C-H bond on the W surface.