ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Simon Niemes, Michael Sturm, Robert Michling, Beate Bornschein
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 507-510
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T66
Articles are hosted by Taylor and Francis Online.
The β-ray induced X-ray spectrometry (BIXS) is a promising technique to monitor the tritium concentration in a fuel cycle of a fusion reactor. For in-situ measurements of high level tritiated water by bremsstrahlung counting, the characteristics of a low-noise silicon drift detector (SDD) have been examined at the Tritium Laboratory Karlsruhe (TLK). In static measurements with constant sample volume and tritium concentration, the bremsstrahlung spectra of tritiated water samples in a concentration range of 0.02 to 15 MBq/ml have been observed. The volume has been kept constant at 5 cm3. The observed spectra are well above the noise threshold. In addition to X-rays induced by β-rays, the spectra feature X-ray fluorescence peaks of the surrounding materials. No indications of memory effects have been observed. A linear relation between the X-ray intensity and the tritium concentration was obtained and the lower detection limit of the setup has been determined to 1 MBq ml-1, assessed by the Currie criterion. In addition, the spectra obtained experimentally could be reproduced with high agreement by Monte-Carlo simulations using the Geant4-toolkit. It was found that the present detection system is applicable to non-invasive measurements of high-level tritiated water and the SDD is a convenient tool to detect the low energy bremsstrahlung X-rays.