ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Ayano Nakamura, Kenzo Munakata, Keisuke Hara, Syodai Narita, Takahiko Sugiyama, Kenji Kotoh, Masahiro Tanaka, Tatsuhiko Uda
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 499-502
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T64
Articles are hosted by Taylor and Francis Online.
It is necessary to recover or process tritiated species that are extensively coexistent in nuclear fusion installations. A conventional way to recover tritium release to atmosphere is catalytic oxidation of tritiated species and adsorption of tritated water vapor on adsorbents with high surface areas. However, pressure loss would become more serious with increase in the size of adsorbent beds, which could lead to greater power needs for ventilation systems. Therefore, new adsorbents with low pressure loss and high surface areas need to be developed and utilized for such large-scale adsorption systems. Thus, the authors tested new types of adsorbents, which are gear-type and honeycomb-type pellet adsorbents. The experimental results reveal that the gear-type pellet adsorbents have larger adsorption capacity than the honeycomb-type pellet adsorbent. It was also found that the gear-type MS4A adsorbent possesses larger adsorption capacity than other adsorbents tested in this work. Furthermore, it was found that new types of adsorbents are lower pressure than conventional-type of adsorbents. Among the new adsorbents studied in this work, the gear-type MS4A adsorbent appears to be most promising for the application to the adsorption systems in terms of adsorption capacity and adsorption rate.