ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Kazuyoshi Hada, Kazunobu Nagasaki, Kai Masuda, Shinji Kobayashi, Shunsuke Ide, Akihiko Isayama, Ken Kajiwara
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 693-704
Technical Paper | doi.org/10.13182/FST14-811
Articles are hosted by Taylor and Francis Online.
By using a one-dimensional model, we analyze plasma start-up assisted by second-harmonic extraordinary-mode electron cyclotron (EC) resonance heating (ECRH). The model leads to energy transport equations for electrons and ions, particle transport equations for electrons and hydrogen atoms, and a toroidal current equation. These equations are solved for a cylindrically symmetrical plasma; that is, a torus straightened to a cylinder with a circular cross section and on-axis ECRH power absorption. The calculation indicates that ECRH has a threshold power for plasma start-up in JT-60SA. For example, approximately 1 MW of ECRH power is required for plasma start-up for an initial hydrogen atom density nH(t=0) = 3.0 × 1018 m-3, an error field Berr = 1 mT, carbon and oxygen impurity fractions nc/ne = no/ne = 0.1%, and an EC beam radius of approximately 5 cm. This estimated ECRH power is less than the planned power and increases sublinearly with the initial hydrogen atom density. The threshold power depends weakly on the error field and carbon impurity concentration. This is especially prominent for plasma start-up with a low initial hydrogen atom density. This result implies that suppressing the error field and carbon impurity density is helpful for reliable plasma start-up.