ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
P. V. Subhash, Y. Ghai, S. K. Amit, A. M. Begum, P. Vasu
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 705-717
Technical Paper | doi.org/10.13182/FST14-823
Articles are hosted by Taylor and Francis Online.
The differences in the electron cyclotron emission spectrum from a tokamak plasma between a direct line of sight (LOS) (normal to the toroidal magnetic field) and a slightly oblique LOS have been modeled. A typical ITER tokamak scenario has been chosen in this study. The usefulness of such an additional detector for obtaining a better radial resolution is examined. The intensities of the radiation, as observable from the low-field side, covering the first harmonic ordinary mode spectral frequencies ∼120 to 230 GHz have been compared. We find that at certain frequencies the radiation observed along the oblique view seems to come from a narrower region. This affords the possibility of realizing better radial spatial resolution, compared to that possible by a direct view alone, for localizing any fluctuations, identifying abrupt changes in the temperature profile, etc. The physical reasons for the code-predicted differences between the direct and oblique spectra are elucidated. The translation of the radial resolution calculations into realistic phenomena is studied for two situations: neoclassical tearing modes and a damped sinusoidal perturbation. For both cases, the oblique view yields a better reproduction of the situation.