ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
P. V. Subhash, Y. Ghai, S. K. Amit, A. M. Begum, P. Vasu
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 705-717
Technical Paper | doi.org/10.13182/FST14-823
Articles are hosted by Taylor and Francis Online.
The differences in the electron cyclotron emission spectrum from a tokamak plasma between a direct line of sight (LOS) (normal to the toroidal magnetic field) and a slightly oblique LOS have been modeled. A typical ITER tokamak scenario has been chosen in this study. The usefulness of such an additional detector for obtaining a better radial resolution is examined. The intensities of the radiation, as observable from the low-field side, covering the first harmonic ordinary mode spectral frequencies ∼120 to 230 GHz have been compared. We find that at certain frequencies the radiation observed along the oblique view seems to come from a narrower region. This affords the possibility of realizing better radial spatial resolution, compared to that possible by a direct view alone, for localizing any fluctuations, identifying abrupt changes in the temperature profile, etc. The physical reasons for the code-predicted differences between the direct and oblique spectra are elucidated. The translation of the radial resolution calculations into realistic phenomena is studied for two situations: neoclassical tearing modes and a damped sinusoidal perturbation. For both cases, the oblique view yields a better reproduction of the situation.