ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Prachai Norajitra, Widodo Widjaja Basuki, Radmir Giniyatulin, Caroline Hernandez, Vladimir Kuznetsov, Igor V. Mazoul, Marianne Richou, Luigi Spatafora
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 732-744
Technical Paper | doi.org/10.13182/FST14-832
Articles are hosted by Taylor and Francis Online.
A helium-cooled divertor concept for DEMO has been continuously developed over the past decade at the Karlsruhe Institute of Technology within the framework of the former European Fusion Power Plant Conceptual Study. Over the years, research results and progress of the divertor development with numerous earnings representations have been continually reported. This paper first gives a retrospect of the past results achieved so far and then reports on recent progress of the divertor development. In the course of developing the conceptual design with the goal of reaching a divertor heat flux performance of 10 MW/m2, the He-cooled modular divertor with jet cooling (HEMJ) was selected in the early 2000s as the reference concept out of a series of conceptual design studies. For verification of the design principle, a combined high-heat-flux (HHF) test facility with helium loop was built in 2004 at the Efremov Institute for the divertor experiments under specified DEMO conditions. There, the cooling performance of the divertor finger with helium under the heat load of 10 MW/m2 was confirmed already at an early stage. In parallel, the HEMJ divertor design was successively improved in terms of its robustness and quality of production in order to achieve a long service life against thermocyclic loading. A breakthrough was achieved in 2010 when an optimized HEMJ cooling finger survived more than 1000 HHF cycles at 10 MW/m2 without damage. In the context of long-term planning for DEMO divertor development, research and development work on the development of larger divertor components has been started, particularly focusing on certain fabrication techniques covering, e.g., high-temperature brazing and mass production of the divertor components. Recent progress—a part of this paper—was achieved in the HHF experiment of the tungsten nine-finger module in Efremov, development of nondestructive testing methods for testing multifinger modules in collaboration with CEA, and a study on the integration of multifinger modules on the target plate.