ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ronald D. Boyd
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 754-761
Technical Paper | doi.org/10.13182/FST14-814
Articles are hosted by Taylor and Francis Online.
The hypervapotron (HV) has been demonstrated to be a superior thermal management (TM) and high heat flux removal (HHFR) technique for fusion reactor plasma-facing component applications involving a single-side absorbed heat flux (up to between 20 and 30 MW/m2). However, the conjugate heat transfer HV flow channel (HFC) only can be optimized completely when the related HHFR controlling parameters have been identified. In an earlier work, Part I of the present effort, we identified three high heat flux-side controlling TM and HHFR dimensionless parameters and a characteristic temperature difference. In the present work, six HV wall conjugate heat transfer dimensionless primary controlling parameters and five secondary controlling parameters have been identified. The controlling parameters include the effects of (1) most geometric specifications of the array of fins; (2) variations in the HV wall thermal conductivity and heat transfer coefficient; (3) effective Biot numbers characterizing effects that include the fin array, a typical fin example, and the side walls; (4) the HFC unobstructive portion flow aspect ratio, and (5) the HFC wall aspect ratio.