ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ronald D. Boyd
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 745-753
Technical Paper | doi.org/10.13182/FST14-813
Articles are hosted by Taylor and Francis Online.
A hypervapotron is an excellent candidate for single-side high heat flux removal (HHFR). Hypervapotron HHFR is accomplished by subcooled two-phase flow boiling and conjugate heat transfer involving efficient vapor generation, channeling, and condensation. To characterize additional optimal operating characteristics effectively using computational fluid dynamics (CFD) and/or experimental approaches (and/or design approaches), knowledge of the hypervapotron controlling parameters is essential for timely identification of enhancements to the HHFR configuration. To that end, three high heat flux–side controlling parameters and a characteristic temperature difference have been identified. These parameters include the effects of conjugate heat transfer, two-dimensional channel-wall dimensionless aspect ratios, and the characteristic temperature difference. Finally, these parameters may be useful in CFD (and experimental and/or design approaches) studies for optimizing HHFR and thermal protection in fusion and aerospace systems.