ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Shohei Matsuda, Kazunari Katayama, Motoki Shimozori, Satoshi Fukada, Hiroki Ushida, Masabumi Nishikawa
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 467-470
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T56
Articles are hosted by Taylor and Francis Online.
F82H is a primary candidate of structural material and coolant pipe material in a blanket of a fusion reactor. Understanding tritium permeation behavior through F82H is important. In a normal operation of a fusion reactor, the temperature of F82H will be controlled below 550 °C because it is considered that F82H can be used up to 30,000 hours at 550 °C. However, it is necessary to assume the situation where F82H is heated over 550 °C in a severe accident. In this study, hydrogen permeation behavior through F82H was investigated in the temperature range from 500 °C to 800 °C. In some cases, water vapor was added in a sample gas to investigate an effect of water vapor on hydrogen permeation. The permeability of hydrogen in the temperature range from 500 °C to 700 °C agreed well with the permeability reported by E. Serra et al. The degradation of the permeability by water vapor was not observed. After the hydrogen permeation reached in a steady state at 700 °C, the F82H sample was heated to 800 °C. The permeability of hydrogen through F82H sample which was once heated up to 800 °C was lower than that of the original one.