ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
K. Liger, P. Trabuc, X. Lefebvre, M. Troulay, C. Perrais
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 455-458
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T53
Articles are hosted by Taylor and Francis Online.
In the framework of the development of fusion thermonuclear reactors, tritiated solid waste is foreseen and will have to be managed. In France, the long-term management of all radioactive waste is under the responsibility of the national waste management agency (ANDRA), which sets out strict specifications on waste drums before their acceptances in disposal. Among all these specifications, the related ones for tritium concern limitations in terms of activity and tritium degassing. The latter is the subject of research developments to improve its control. The degassing tritium can be under the form of tritiated hydrogen, tritiated water and, in some specific cases, negligible amount of tritiated volatile organic compound. Hence, considering the major forms of degassing tritium, CEA has developed a mixed-compound dedicated to tritium trapping in drums. Based on several experiments, the foreseen mixed compound is composed of MnO2, Ag2O, Pt and molecular sieve, the three first species having the ability to convert tritiated hydrogen into tritiated water and the last one acting as a trap for tritiated water. This paper aims at describing the formulation of the mixed solids compound and presenting the first results of experimental lab-scale tests performed on purely tritiated waste confined in a small reactor. It is observed that the rate of tritium degassing from the reactor is reduced drastically during several months by means of the presence of the mixed compound.