ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Daeseo Koo, Jungmin Lee, Jongchul Park, Hyun-Goo Kang, Min Ho Chang, Sei-Hun Yun, Seungyon Cho, Ki Jung Jung, Seungwoo Paek, Hongsuk Chunga
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 435-438
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T48
Articles are hosted by Taylor and Francis Online.
Korea has been developing nuclear fusion fuel storage and delivery system (SDS) technologies including a basic scientific study on hydrogen storage. To develop nuclear fusion technology, it will be necessary to store and supply hydrogen isotopes needed for Tokamak operation. SDS is used for storing hydrogen isotopes as a metal hydride form. We designed and fabricated a small-scale getter bed of zirconium cobalt (ZrCo). The rapid hydriding of tritium is very important not only for safety reasons but also for the economic design and operation of the SDS. The effect of the initial absorption temperatures on the hydriding of ZrCo was measured and analyzed. The experimental results of the hydrogen pressure of hydriding (ZrCoH2.8) at various cooling temperatures are in agreement with the calculated values using numerical modeling equations. The effect of a helium blanket on hydriding was measured and analyzed. The experimental results of the hydriding with 0 %, 4%, and 8% of helium concentration are in agreement with the calculated values based on numerical modeling equations.