ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Daeseo Koo, Jungmin Lee, Jongchul Park, Hyun-Goo Kang, Min Ho Chang, Sei-Hun Yun, Seungyon Cho, Ki Jung Jung, Seungwoo Paek, Hongsuk Chunga
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 435-438
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T48
Articles are hosted by Taylor and Francis Online.
Korea has been developing nuclear fusion fuel storage and delivery system (SDS) technologies including a basic scientific study on hydrogen storage. To develop nuclear fusion technology, it will be necessary to store and supply hydrogen isotopes needed for Tokamak operation. SDS is used for storing hydrogen isotopes as a metal hydride form. We designed and fabricated a small-scale getter bed of zirconium cobalt (ZrCo). The rapid hydriding of tritium is very important not only for safety reasons but also for the economic design and operation of the SDS. The effect of the initial absorption temperatures on the hydriding of ZrCo was measured and analyzed. The experimental results of the hydrogen pressure of hydriding (ZrCoH2.8) at various cooling temperatures are in agreement with the calculated values using numerical modeling equations. The effect of a helium blanket on hydriding was measured and analyzed. The experimental results of the hydriding with 0 %, 4%, and 8% of helium concentration are in agreement with the calculated values based on numerical modeling equations.