ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Daeseo Koo, Jungmin Lee, Jongchul Park, Hyun-Goo Kang, Min Ho Chang, Sei-Hun Yun, Seungyon Cho, Ki Jung Jung, Seungwoo Paek, Hongsuk Chunga
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 435-438
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T48
Articles are hosted by Taylor and Francis Online.
Korea has been developing nuclear fusion fuel storage and delivery system (SDS) technologies including a basic scientific study on hydrogen storage. To develop nuclear fusion technology, it will be necessary to store and supply hydrogen isotopes needed for Tokamak operation. SDS is used for storing hydrogen isotopes as a metal hydride form. We designed and fabricated a small-scale getter bed of zirconium cobalt (ZrCo). The rapid hydriding of tritium is very important not only for safety reasons but also for the economic design and operation of the SDS. The effect of the initial absorption temperatures on the hydriding of ZrCo was measured and analyzed. The experimental results of the hydrogen pressure of hydriding (ZrCoH2.8) at various cooling temperatures are in agreement with the calculated values using numerical modeling equations. The effect of a helium blanket on hydriding was measured and analyzed. The experimental results of the hydriding with 0 %, 4%, and 8% of helium concentration are in agreement with the calculated values based on numerical modeling equations.