ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
J. E. Klein, K. L. Shanahan, P. J. Foster, R. A. Baker
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 424-427
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T45
Articles are hosted by Taylor and Francis Online.
A nominal 1500 STP-L Passively Cooled, Electrically heated hydride (PACE) Bed was developed and deployed into tritium service in Savannah River Site (SRS) Tritium Facilities. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method: In-Bed Accountability (IBA). In some instances, two physical beds, or canisters, were joined together with one process line connection, creating a bed with a total capacity of nominally 3000 STP-L or up to 815 grams of tritium. The IBA detection limit for these beds was estimated to be 9.75 grams tritium. After deployment of these low tritium beds, the need arose to estimate tritium inventories of these beds without installation of IBA instrumentation. Two methods have been developed to estimate the tritium inventory of these low tritium content beds. The first approach assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed’s hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory.