ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
J. E. Klein, K. L. Shanahan, P. J. Foster, R. A. Baker
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 424-427
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T45
Articles are hosted by Taylor and Francis Online.
A nominal 1500 STP-L Passively Cooled, Electrically heated hydride (PACE) Bed was developed and deployed into tritium service in Savannah River Site (SRS) Tritium Facilities. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method: In-Bed Accountability (IBA). In some instances, two physical beds, or canisters, were joined together with one process line connection, creating a bed with a total capacity of nominally 3000 STP-L or up to 815 grams of tritium. The IBA detection limit for these beds was estimated to be 9.75 grams tritium. After deployment of these low tritium beds, the need arose to estimate tritium inventories of these beds without installation of IBA instrumentation. Two methods have been developed to estimate the tritium inventory of these low tritium content beds. The first approach assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed’s hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory.