ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. E. Klein, K. L. Shanahan, P. J. Foster, R. A. Baker
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 424-427
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T45
Articles are hosted by Taylor and Francis Online.
A nominal 1500 STP-L Passively Cooled, Electrically heated hydride (PACE) Bed was developed and deployed into tritium service in Savannah River Site (SRS) Tritium Facilities. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method: In-Bed Accountability (IBA). In some instances, two physical beds, or canisters, were joined together with one process line connection, creating a bed with a total capacity of nominally 3000 STP-L or up to 815 grams of tritium. The IBA detection limit for these beds was estimated to be 9.75 grams tritium. After deployment of these low tritium beds, the need arose to estimate tritium inventories of these beds without installation of IBA instrumentation. Two methods have been developed to estimate the tritium inventory of these low tritium content beds. The first approach assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed’s hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory.