ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
J. E. Klein
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 416-419
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T42
Articles are hosted by Taylor and Francis Online.
The reduction in hydride absorption rate due to ”blanketing” can be explained in terms of a reduced hydrogen partial pressure in the bed due to the accumulation of inerts (i.e. non-hydrogen isotopes) in the bed void volume. Literature results show reduced absorption rates when protium for bed absorption contains helium with low-end inert compositions in the 0.6 to 1% range. A hydride bed containing 9.66 kg of LaNi4.25Al0.75 (LANA0.75) metal hydride - a nominal capacity of 1400 STP-L, was cycled repeatedly to decrepitate the hydride material into smaller particles for bed strain measurement. The hydride cycles added and removed nominally 1000 to 1100 STP-L of protium per hydride cycle. Consistent and repeatable absorptions results were observed for different absorption cycles. During one of the absorption tests, slower absorption results were obtained due to the use of typical grade (500 ppm inerts), instead of research grade, protium which blanketed the bed. The impact of 0.05% inerts in protium on bed absorption rate is shown and explained in terms of an increase in inert partial pressure as the bed was loaded.