ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
J. E. Klein
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 416-419
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T42
Articles are hosted by Taylor and Francis Online.
The reduction in hydride absorption rate due to ”blanketing” can be explained in terms of a reduced hydrogen partial pressure in the bed due to the accumulation of inerts (i.e. non-hydrogen isotopes) in the bed void volume. Literature results show reduced absorption rates when protium for bed absorption contains helium with low-end inert compositions in the 0.6 to 1% range. A hydride bed containing 9.66 kg of LaNi4.25Al0.75 (LANA0.75) metal hydride - a nominal capacity of 1400 STP-L, was cycled repeatedly to decrepitate the hydride material into smaller particles for bed strain measurement. The hydride cycles added and removed nominally 1000 to 1100 STP-L of protium per hydride cycle. Consistent and repeatable absorptions results were observed for different absorption cycles. During one of the absorption tests, slower absorption results were obtained due to the use of typical grade (500 ppm inerts), instead of research grade, protium which blanketed the bed. The impact of 0.05% inerts in protium on bed absorption rate is shown and explained in terms of an increase in inert partial pressure as the bed was loaded.