ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Alexander S. Khapov, Sergey K. Grishechkin, Vladimir G. Kiselev
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 412-415
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T41
Articles are hosted by Taylor and Francis Online.
Tritium permeation through structural materials is a key issue in many activities linked with tritium handling both for radiological safety and accountancy reasons to say nothing of economical aspect: tritium is not the cheapest material in the world. It is widely recognized that ceramic coatings provide an attractive solution to lower tritium permeation in structural materials. Alumina based ceramic coatings have the highest permeation reduction factor for hydrogen. Nevertheless even small cracking will significantly spoil the permeation reduction factor of a protecting coating. Nowadays for hydrogenating neutron tube targets with tritium “VNIIA” uses working chambers manufactured by pressing of alumina based ceramics. These chambers have revealed extremely low hydrogen permeation upon conditions of their application. For this reason an attempt was made to apply low porous ceramics as a structural material of a bed body for tritium storage in a setup used for hydrogenating neutron tube targets at “VNIIA”. The present article introduces the design of the bed. This bed possesses essentially less hydrogen permeation factor than traditionally used beds with stainless steel body. Bed heating in order to recover hydrogen from the bed is suggested to be implemented by high frequency induction means. Inductive heating allows decreasing the time necessary for tritium release from the bed as well as power consumption. Both of these factors mean less thermal power release into glove box where a setup for tritium handling is installed and thus causes fewer problems with pressure regulations inside the glove box. Inductive heating allows raising tritium sorbent material temperature up to melting point. The latter allows achieving nearly full tritium recovery.