ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Tsuyoshi Hoshino, Kentaro Ochiai, Yuki Edao, Yoshinori Kawamura
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 386-389
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T35
Articles are hosted by Taylor and Francis Online.
Li2TiO3 advanced tritium breeders with excess Li (Li2+xTiO3+y) are stable in a reducing atmosphere at high temperatures. Although the tritium release properties of tritium breeders are documented in databases for DEMO blanket design, no in situ examination under fusion neutron (DT neutron) irradiation has been performed. In this study, a preliminary examination of the tritium release properties of advanced tritium breeders was performed, and DT neutron irradiation experiments were performed at the fusion neutronics source (FNS) facility in JAEA. Considering the tritium release characteristics, the optimum grain size after sintering is <5 µm. From the results of the optimization of granulation conditions, prototype Li2+xTiO3+y pebbles with optimum grain size (<5 µm) were successfully fabricated. The Li2+xTiO3+y pebbles exhibited good tritium release properties similar to the Li2TiO3 pebbles. In particular, the released amount of HT gas for easier tritium handling was higher than that of HTO water.