ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Y. Hatano, V. Kh. Alimov, A. V. Spitsyn, N. P. Bobyr, D. I. Cherkez, S. Abe, O. V. Ogorodnikova, N. S. Klimov, B. I. Khripunov, A. V. Golubeva, V. M. Chernov, M. Oyaidzu, T. Yamanishi, M. Matsuyama
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 361-364
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T30
Articles are hosted by Taylor and Francis Online.
The effects of displacement damage, plasma exposure and heat loads on T retention in reduced-activation ferritic/martensitic (RAFM) steels were investigated by exposing the steels to DT gas at 473 K. Despite enormous change in surface morphology, T retention in the heat-loaded specimen was comparable with that in the unloaded specimen. The exposure to plasma resulted in a drastic increase in T retention at the surface and/or sub surface. However, the T trapped at the surface/subsurface was easily removed by maintaining the specimens in air at ∼300 K. Formation of radiation-induced defects led to a significant increase in T retention, and T trapped in the defects was not removed at ∼300 K. These observations suggest that displacement damages have the largest effects on T retention at ∼473 K.