ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Alexey Golubev, Yuri Balashov, Sergey Mavrin, Valentina Golubeva, Dan Galeriu
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 349-352
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T27
Articles are hosted by Taylor and Francis Online.
Washout coefficient Λ is widely used as a parameter in washout models. These models describes overall HTO washout with rain by the first-order kinetic equation, while washout coefficient Λ depends on the type of rain event and rain intensity and empirical parameters a, b. It was shown recently that variations of published data of washout coefficient are significant. Thus Λ = 10−4 sec−1 for the light rain event (∼ 1 mm-hour−1) while Λ = 10−3 sec−1 for heavy rain (∼ 25 mm-hour−1). Canadian standard recommends washout coefficient of 1.8-10−4 sec−1, German standard gives 3.5-10−5sec−1, while published Japan data varies from Λ = (7.3 ± 4.1)-10−5 sec−1 at 2 mm hour−1 to Λ = 4.6-10−4 sec−1 for the same rain intensity. This means that further investigations of HTO washout process are required. One of the issues is determining the useful relationship between macroscopic parameter of HTO washout Λ and microscopic HTO exchange rate of HTO molecules in atmosphere and in the raindrop water. Approaches to address this issue have been presented elsewhere. It can be shown that the empirical parameters a, b can be represented through the rain event characteristics using the relationships for molecular impact rate, rain intensity and specific rain water content while washout coefficient can be represented through the exchange rate K, rain intensity, raindrop diameter and terminal raindrop velocity.