ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Satoshi Fukada, K. Katayama, T. Takeishi, Y. Edao, Y. Kawamura, T. Hayashi, T. Yamanishi
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 339-342
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T25
Articles are hosted by Taylor and Francis Online.
What affects tritium migration through porous concrete walls coated with a hydrophobic paint is reviewed from the viewpoint of tritium safety. Being taken into consideration of multi-structural concrete composed of aggregates, sand, water and cement which contents are CaO, SiO2, Al2O3, Fe2O3, MgO, CaSO4 and so on, tritium path is discussed in terms of the HTO diffusivity and adsorption coeffcient on porous walls. Measures to predict rates of tritium leak from laboratory walls to the environment and residual tritium amounts in concrete are estimated based on previous data. Three cases of accidental or chronic tritium release to laboratory air are discussed using the diffusion-adsorption model.