ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
D. Demange, I. Cristescu, E. Fanghänel, M. Glugla, N. Gramlich, T.L. Le, R. Michling,H. Moosmann, W.M. Shu, K.H. Simon, R. Wagner, S. Welte, R.S Willams
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 312-315
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T18
Articles are hosted by Taylor and Francis Online.
The CAPER facility of the Tritium Laboratory Karlsruhe has demonstrated the technology for the tokamak exhaust processing. CAPER has been significantly upgraded to pursue R&D towards highly tritiated water (HTW) handling and processing. The preliminary tests using a metal oxide reactor producing HTW afterward detritiated with PERMCAT were successful. In a later stage, a micro-channel catalytic reactor was installed in view of long term R&D program on HTW. The integration of this new system in CAPER was carried out along with a careful safety analysis due to high risk associated with such experiments. First experiments using the μ-CCR were performed trouble free, and HTW up to 360 kCi/kg was produced at a rate of 0.5 g/h. Such HTW was collected into a platinized zeolite bed (2 g of HTW for 20 g of Pt-zeolite), and in-situ detritiation was performed via isotopic exchange with deuterium. These first experimental results with tritium confirmed the potential for the capture and exchange method to be used for HTW in ITER.