ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Anisia Bornea, Catalin Petrutiu, Marius Zamfirache
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 270-273
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T8
Articles are hosted by Taylor and Francis Online.
The main purpose of this paper is to present a comprehensive software, SICA, designed to be used in water-hydrogen liquid phase catalytic exchange process (LPCE). The software calculates the water-gas catalytic isotopic exchange process, following the transfer of any H, D or T isotope from water to gas and vice versa. This software is useful both for design and laboratory-based research; the type of the catalytic filling (ordered or random) can be defined for any of these two cases, the isotopic calculation being specific to the package type. For the laboratory-based research, the performance of a catalytic packing can be determined defining the type and using the experimental results. Performance of the mixed catalytic packing is defined by mass transfer constants for each catalytic and hydrophilic package in that specific arrangement, and also for the isotope whose transfer is studied from one phase to another. Also, it has been established a link between these constants and commonly used parameters for the fillings performance defined by HETP (height equivalent of Theoretical Plate). To demonstrate the availability of the software, we presented a comparative analysis of water-gas catalytic isotopic exchange on a column equipped with three types of filling: successive layers, random or structured (ordered package filled with catalyst). The program can be used for the LPCE process calculation, process used at detritiation facilities for CANDU reactors or fusion reactors.