ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
X. R. Wang, M. S. Tillack, C. Koehly, S. Malang, H. H. Toudeshki, F. Najmabadi, ARIES Team
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 193-219
Technical Paper | doi.org/10.13182/FST14-798
Articles are hosted by Taylor and Francis Online.
ARIES-ACT2 is a conventional tokamak power plant conceptual design that uses a dual-coolant lead-lithium (DCLL) blanket concept with a RAFS (reduced-activation ferritic steel) first-wall (FW) and blanket structure. The design concept is the first fully integrated study of the DCLL blanket in a tokamak power plant. The major engineering efforts were to develop a credible configuration that can meet aggressive maintenance goals and achieve high availability and maintainability; to design a DCLL blanket that can meet tritium breeding requirements with reasonable helium and Pb-17Li cooling schemes to remove the surface and volumetric thermal power in the blanket while keeping the helium pressure drop, magnetohydrodynamic (MHD) pressure drop, and total pumping power low, and material temperatures and stresses at an acceptable level; to design manifolding and access pipes to connect/disconnect the inboard and outboard blanket sectors to the ring headers located underneath the reactor without affecting maintenance operations and creating major MHD effects when feeding all the Pb-17Li/He mass flow. Detailed three-dimensional finite element analysis of the DCLL blankets together with design iterations have been performed to finalize and optimize the major design parameters of the FW and blanket structure. The helium-cooled W plate-type divertor concept was adopted and integrated into the ACT2 DCLL power core to accommodate the peak surface heat flux of ∼10 MW/m2 predicted by edge plasma physics.