ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills, J. D. Rader
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 142-157
Technical Paper | doi.org/10.13182/FST14-792
Articles are hosted by Taylor and Francis Online.
Current predictions suggest that the target plate of a divertor, as one of the few solid surfaces directly exposed to the plasma of a magnetic fusion energy reactor, will be subject to steady-state heat fluxes as great as 10 MW/m2. Developing appropriate methods for cooling these divertors with helium is therefore a major technological challenge for plasma-facing components. This paper reviews dynamically similar experimental studies and numerical simulations of the thermal-hydraulic performance of two helium-cooled divertor concepts, the helium-cooled divertor with multiple-jet cooling (HEMJ) and the helium-cooled flat plate divertor, as well as a variant of the HEMJ, the so-called finger-type divertor, performed as part of the ARIES study. The results from these studies are extrapolated to prototypical conditions and used to predict the maximum average heat flux and coolant pumping power requirements for these divertor concepts. These extrapolations can be used to estimate how changes in the operating conditions, such as the helium inlet temperature and the maximum temperature of the divertor pressure boundary, affect thermal performance. Finally, the correlations from these extrapolations are used in the system code developed by the ARIES study.