ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills, J. D. Rader
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 142-157
Technical Paper | doi.org/10.13182/FST14-792
Articles are hosted by Taylor and Francis Online.
Current predictions suggest that the target plate of a divertor, as one of the few solid surfaces directly exposed to the plasma of a magnetic fusion energy reactor, will be subject to steady-state heat fluxes as great as 10 MW/m2. Developing appropriate methods for cooling these divertors with helium is therefore a major technological challenge for plasma-facing components. This paper reviews dynamically similar experimental studies and numerical simulations of the thermal-hydraulic performance of two helium-cooled divertor concepts, the helium-cooled divertor with multiple-jet cooling (HEMJ) and the helium-cooled flat plate divertor, as well as a variant of the HEMJ, the so-called finger-type divertor, performed as part of the ARIES study. The results from these studies are extrapolated to prototypical conditions and used to predict the maximum average heat flux and coolant pumping power requirements for these divertor concepts. These extrapolations can be used to estimate how changes in the operating conditions, such as the helium inlet temperature and the maximum temperature of the divertor pressure boundary, affect thermal performance. Finally, the correlations from these extrapolations are used in the system code developed by the ARIES study.