ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills, J. D. Rader
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 142-157
Technical Paper | doi.org/10.13182/FST14-792
Articles are hosted by Taylor and Francis Online.
Current predictions suggest that the target plate of a divertor, as one of the few solid surfaces directly exposed to the plasma of a magnetic fusion energy reactor, will be subject to steady-state heat fluxes as great as 10 MW/m2. Developing appropriate methods for cooling these divertors with helium is therefore a major technological challenge for plasma-facing components. This paper reviews dynamically similar experimental studies and numerical simulations of the thermal-hydraulic performance of two helium-cooled divertor concepts, the helium-cooled divertor with multiple-jet cooling (HEMJ) and the helium-cooled flat plate divertor, as well as a variant of the HEMJ, the so-called finger-type divertor, performed as part of the ARIES study. The results from these studies are extrapolated to prototypical conditions and used to predict the maximum average heat flux and coolant pumping power requirements for these divertor concepts. These extrapolations can be used to estimate how changes in the operating conditions, such as the helium inlet temperature and the maximum temperature of the divertor pressure boundary, affect thermal performance. Finally, the correlations from these extrapolations are used in the system code developed by the ARIES study.