ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
L. EL-Guebaly, L. Mynsberge, ARIES-ACT Team
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 107-124
Technical Paper | doi.org/10.13182/FST14-791
Articles are hosted by Taylor and Francis Online.
The integration of nuclear assessment (neutronics, shielding, and activation) is an essential element to the success of any fusion design and represents a major issue for power plant studies in particular. High fidelity in nuclear results mandates performing state-of-the-art nuclear analyses. This has been achieved in recent years through coupling the computer-aided-design system directly with three-dimensional neutronics codes to preserve all geometrically complex design elements and speed up feedback and iterations. This paper outlines several major nuclear issues addressed for the recently completed ARIES-ACT1 tokamak conceptual power plant study. An integral nuclear approach was deemed necessary to deliver an optimal design. This approach considered the overall configuration, design requirements (including tritium self-sufficiency), smart selection of low-activation material for all components, radial build optimization and definition, and safety and environmental concerns. This paper reports the main results of this integral approach that aims at considering several effects that influence the global behavior of a complex power plant such as ARIES-ACT1.