ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. S. Tillack, X. R. Wang, D. Navaei, H. H. Toudeshki, A. F. Rowcliffe, F. Najmabadi, ARIES Team
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 49-74
Technical Paper | doi.org/10.13182/FST14-790
Articles are hosted by Taylor and Francis Online.
ARIES-ACT1 is the latest in a series of tokamak power plant designs that capitalize on the high-temperature capabilities and attractive safety and environmental characteristics of SiC composites coupled with a self-cooled lead-lithium breeder. This combination offers both design simplicity and high performance, capable of operating at very high coolant outlet temperature in a moderately high-power-density device. Blankets are supported within a poloidally continuous He-cooled steel structural ring, which adds robustness and minimizes loads on the SiC modules. In order to withstand high local surface heat flux in the divertor (of the order of 14 MW/m2 time averaged), a helium-cooled tungsten-alloy divertor was adopted. About 25% of the total “high-grade” heat is thus removed by helium, to be combined with the blanket heat in order to feed the power cycle. In addition to the in-vessel power-producing elements of the design, this paper also summarizes the key features and analysis of the vacuum vessel and power conversion system.